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Previously measured in situ x-ray diffraction is used to assess the development of internal elastic strains
within grains of a sample of polycrystalline cobalt plastically deformed up to a pressure of 42.6 GPa. An
elastoplastic self-consistent polycrystal model is used to simulate the macroscopic flow curves and internal
strain development within the sample. Input parameters are single-crystal elastic moduli and their pressure
dependence, critical resolved shear stresses, and hardening behavior of the slip and twinning mechanisms
which are active in Co crystals. At 42 GPa, the differential stress in hcp-Co is 1.9�0.1 GPa. The comparison
between experimental and predicted data leads us to conclude that: �a� plastic relaxation plays a primary role
in controlling the evolution and ordering of the lattice strains; �b� the plastic behavior of hcp-Co deforming
under high pressure is controlled by basal and prismatic slip of �a� dislocations, and either pyramidal slip of
�c+a� dislocations, or compressive twinning, or both. Basal slip is by far the easiest and most active defor-
mation mechanism. Elastoplastic self-consistent models are shown to overcome the limitations of models based
on continuum elasticity theory for the interpretation of x-ray diffraction data measured on stressed samples.
They should be used for the interpretation of these experiments.
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I. INTRODUCTION

Characterizing the effect of pressure on elastic and plastic
properties of condensed matter is particularly important for
understanding elasticity, mechanical stability of solids, mate-
rial strength, interatomic interactions, and phase-transition
mechanisms. In particular, hexagonal-closed-packed �hcp�
metals are of great interest because they tend to exhibit in-
triguing physical properties1–4 that represent a challenge for
first-principles calculations,5–8 and also because the Earth’s
inner core could be mainly composed of the hcp polymorph
of Fe, �-Fe.9

In the past few years, techniques have been developed to
study the plastic properties of materials in situ under com-
bined high pressure and high temperature.10–13 In those ex-
periments x-ray diffraction is used to probe stress and lattice
preferred orientations �LPOs� within the sample and extract
physical properties such as dominant deformation mecha-
nisms, flow laws, or ultimate stress. However, the theory
commonly used for relating the measured lattice strains to
stress and elastic properties14 is based on lower or upper
bound assumptions and has shown severe limitations. In par-
ticular, it was shown that this model yields inconsistent re-
sults for inverting single-crystal elastic properties for
�-Fe.15–18 This was also confirmed by extensive work on
hcp-Co which demonstrated that the method provides elastic
moduli that are inconsistent with those provided by a range
of other experimental and theoretical techniques.3,5,19–23

In the material science community, the issue of stress
measurement using x-ray or neutron diffraction is known as
residual stress analysis.24,25 There is a body of work showing
that the analysis of such data is not straightforward.26–30 In-

deed, stress and strain are very heterogeneous in plastically
deformed materials and upper or lower bound models based
on continuum elasticity theory do not account for this phe-
nomenon. Various techniques have been developed for the
interpretation of experimental data, based on self-consistent
methods,26,31 or finite-element modeling.28 Self-consistent
analysis has already been applied to high pressure solids with
a cubic structure32,33 and to trigonal quartz.34

Here, we look at the plastic properties of hcp Co under
pressure. Cobalt lies next to iron in the Periodic Table and its
hcp phase has a wide stability field.35 Unlike the hcp phase
of iron, it is stable at ambient pressure with readily available
single crystals. As such, it has become a paradigm for com-
paring and testing numerous high pressure techniques. The
phase diagram and equation of state have been studied using
both x-ray diffraction35–37 and first-principles calculations.5,8

Elastic properties have been obtained under ambient pressure
using ultrasonic techniques38 and at high pressure using in-
elastic x-ray scattering19,20,39 �IXS�, Raman spectroscopy,3

impulsive stimulated light scattering,23 and first-principles
techniques.5 The plastic properties of hcp-Co have been in-
vestigated under ambient pressure for both coarse grains40–44

and nanocrystalline samples.45–47 High pressure diamond-
anvil cell �DAC� radial diffraction �RDX� experiments have
been reported,22 but lacked an interpretation based on the
interplay between elastic and plastic mechanisms.

In this paper, we use a modification of the elastoplastic
self-consistent �EPSC� model of Turner and Tomé31 to simu-
late and interpret DAC experiment previously done on a Co
aggregate for pressures up to 42.6 GPa.22 This model yields
information about the absolute strength of the deformation
mechanisms involved, stress distribution among grains in the
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sample, and true stress values for the polycrystal. In addition,
our modeling shows the important role that plastic relaxation
and nonhomogeneity of stress and strain play in high pres-
sure experiments.

II. METHODS

A. Experimental data

The experimental data on hcp-Co that we use here have
been published previously.22 Two experiments were per-
formed in which a sample of pure hcp-Co was compressed in
a diamond-anvil cell, up to 42.6 GPa for the first run and up
to 12.8 GPa for the second run. Diffraction data were col-
lected in a radial geometry with the incoming x-ray beam
perpendicular to the load axis.

Figure 1 shows measured strains for several crystallo-
graphic planes vs �1–3 cos2 �� for a hydrostatic pressure of
42.6 GPa, where � is the angle between the diffracting plane
normal and the direction of maximum stress. They are nearly
linear with �1–3 cos2 ��, as predicted by purely elastic lat-
tice strain theory.14 However, it was shown that stresses cal-
culated using this theory for individual lattice planes were
inconsistent.22

For all pressures in the experiment, the variations in dif-
fraction intensity with orientation were used to extract lattice
preferred orientations in the sample, while peak shifts were
used to extract lattice strains parameters Q �discussed in Sec.

II B 4� for the 101̄0, 0002, 101̄1, 101̄2, 112̄0, 101̄3, and
0004 diffraction lines of hcp-Co �Fig. 2�.

B. Elastic model

1. Stress and strain

Under high pressure, it is preferable to separate the effect
of hydrostatic pressure and deviatoric stress, and define elas-
tic moduli as relating stress and strain deviations relative to
the hydrostatic state. Elastic constants are then appropriate
for calculation of elastic wave velocities and comparison
with previous work. This relation is not trivial under
pressure,48–50 and we therefore discuss several definitions of
stress and strains. In this paper, the superscript “ 0” will refer
to absolute stress and strain �relative to ambient pressure�,
while the superscript “ P” will refer to stress, strain, or stiff-
ness relative to the state of hydrostatic pressure P.

The relation between stress tensors relative to ambient
pressure �absolute stress� �ij

0 and stress tensors relative to the
hydrostatic pressure �relative stress� �ij

P is straightforward,

�ij
0 = �ij

P + P · �ij = Cijkl
P �kl

P + P · �ij , �1�

where �ij is the Kronecker function and �ij
P the strain tensor

relative to the state of hydrostatic pressure. �ij
P is often re-

ferred to as deviatoric stress in the literature, although it may
not be traceless at the grain level. Cijkl

P are single-crystal
elastic moduli for a medium under hydrostatic pressure P.

Strain definitions can be more complicated. If we consider
an element of length d0 under ambient pressure, length dP at
the hydrostatic pressure P, and length d under a general
stress �ij

0 , we define the following lattice strains:

�P =
d − dP

dP
, �2�
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FIG. 1. �Color online� Measured and simulated strains vs
�1–3 cos2 �� under the hydrostatic pressure of 42.6 GPa. Circles
are data from Ref. 22. d are measured d spacings and dP d spacings
under equivalent hydrostatic pressure. Thick black lines are results
of EPSC calculations using model 4 in Table II. Thin red lines are
results of EPSC calculations using model 5 in Table II. Thin dashed
lines are predictions of an elastic model with no effect of LPO �Ref.
14� assuming a differential stress of 4 GPa. In all cases, the d
spacings under equivalent hydrostatic pressure dP have been ob-
tained assuming relation 15.
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FIG. 2. �Color online� Measured and simulated lattice strain

parameters vs pressure for the 101̄0, 0002, 0004, 101̄1, 101̄2, 112̄0,

and 101̄3 diffraction lines of hcp-Co. Gray symbols are data from
Exp. 2 in Ref. 22, solid symbols are data from Exp. 3 in Ref. 22,
thick black lines are EPSC simulations using model 4 in Table II,
and thin red lines are EPSC simulations using model 5 in Table II.
Experimental data for the 0004 diffraction line are shown using
square symbols. All other experimental data are represented with
circles.
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�0 =
d − d0

d0
, �3�

�P
0 =

dP − d0

d0
, �4�

from where

�0 = �1 + �P
0 ��P + �P

0 . �5�

�P are the strains relative to the hydrostatic pressure state and
could be referred to as “relative strains;” �0 are the strains
relative to the ambient pressure state and could be referred to
as “absolute strains.”

Note that elastic moduli under hydrostatic pressure Cijkl
P

relate relative strains �ij
P and relative stresses �ij

P, and that the
relation between absolute strains �ij

0 and absolute stresses �ij
0

is not straightforward.

2. Coordinate systems

Analysis and calculations can be simplified if single-
crystal elastic moduli, d spacings measured using x-ray dif-
fraction, and sample stress, are expressed in the suitable co-
ordinate system.

The diamond-anvil cell geometry defines a sample coor-
dinate system, KS, with ZS aligned with the compression di-
rection and YS parallel to the incoming x-ray beam, pointing
toward the detector. This coordinate system is well defined in
the experiment and useful to relate all information expressed
in the other systems. Stress in diamond-anvil cells are mostly
axial and, when expressed in KS, the stress applied to the
polycrystalline sample reads

�P−KS = �− t
3 0 0

0 − t
3 0

0 0 2 t
3

� , �6�

where t is the differential stress.
The diffraction direction defines a diffraction coordinate

system KD with the axis ZD parallel to the scattering vector
N �bisector between the incoming beam and the diffracted
x-ray beam collected by the detector� and YD perpendicular
to ZD and contained in the plane defined by the incident and
diffracted beams. In KD the d spacings measured in diffrac-
tion are the 33 component of the crystal strain tensor

�33
P−KD =

dm�hkl� − dP�hkl�
dP�hkl�

, �7�

where dm�hkl� is the measured d spacing for the hkl reflec-
tion and dP�hkl� is the d spacing of the hkl reflection under
the hydrostatic pressure P.

The crystal coordinate system KC is defined by the �or-
thogonal� crystal axes. Microscopic physical relations, such
as Hooke’s law relating the microscopic stress, strain, and
single-crystal elastic moduli refer to each crystallite coordi-
nate system KC. d spacings for hkl reflections in individual
grains should be extracted from calculations using Hooke’s
law in KC.

3. Texture and lattice preferred orientations

The texture in the sample can be represented by an orien-
tation distribution function �ODF�. The ODF is required to
estimate anisotropic physical properties of polycrystals such
as elasticity or plasticity.51 The ODF represents the probabil-
ity for finding a crystal orientation, and it is normalized such
that an aggregate with a random orientation distribution has a
probability of one for all orientations. If preferred orientation
�texture� is present, some orientations have probabilities
higher than one and others lower than one.

The ODF can be calculated using the variation in diffrac-
tion intensity with orientation using tomographic algorithms
such as WIMV,52 as implemented in the BEARTEX package53

or in the “Maud Rietveld” refinement program.54 This tech-
nique has been successfully applied to measure textures and
deduce active high pressure deformation mechanisms.55

Textures of the sample analyzed here have been described
in detail22 and Fig. 3 presents inverse pole figures of the
compression direction for experiment 2 at 3.5 and 42.6 GPa.
For hcp-Co compressed in the DAC, we observe the devel-
opment of a relatively strong texture with a maximum at
about 15° from 0001.

4. Elastic strains

For polycrystals, diffraction peaks are the sum of the con-
tribution from all crystallites in the correct reflection condi-
tions, i.e., crystallites whose normal to the �hkl� plane is
parallel to the scattering vector N. The corresponding indi-
vidual d spacings depend on the local stress and elastic prop-
erties in the grain considered. The measured d spacing

FIG. 3. ��a� and �b�� Experimental and ��c� and �d�� simulated inverse pole figures of the compression direction for hcp-Co. ��a� and �b��
Experimental data are from Exp. 2 in Ref. 22. Simulations are results of VPSC calculations using models �c� 4 and �d� 5 in Table II after 10%
strain. Equal area projection, linear scale, and contours in m.r.d.
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dm�hkl� is a weighted arithmetic mean of those individual d
spacings and corresponds to the 33 component of the elastic
strain tensor in the diffraction coordinate system, KD �Eq.
�7��.

Theories have been developed to relate single-crystal
elastic moduli to measured d spacings for stressed polycrys-
tals. Most models rely on elasticity theory and assume either
continuity of stress or of strain within the sample. If, in ad-
dition, it is assumed that the sample is nontextured, it can be
shown that the lattice strain can be expressed as14

�33
P−KD =

dm�hkl� − dP�hkl�
dP�hkl�

= Q�hkl��1 – 3 cos2 �� , �8�

where � is the angle between the diffracting plane normal
and the maximum stress direction �ZS in our case�, and the
lattice strain parameter Q�hkl� is a function of the differential
stress t in the polycrystal and single-crystal elastic moduli
Cijkl

P .
Theories that include texture effects have also been

developed.56 In this case, the measured d spacings do not
vary linearly with �1–3 cos2 �� but can still be related to
differential stress in the polycrystal and single-crystal elastic
moduli. However, deviations between predictions of theories
that include texture effects and those that neglect it are small
and may be difficult to separate experimentally.57 In any
case, it has been shown that this theory does not apply to
data measured on materials where plastic deformation takes
place. In particular, these techniques yield inconsistent
stresses and elastic constants for hcp-Co under
pressure.21,22,58

C. Plastic model

1. EPSC model

The evolution of stress and strain with deformation ob-
served in Co can be related to results of ambient pressure
experiments on other hcp metals �i.e., Be, Mg, and Ti� un-
dergoing plastic deformation which show a similar
behavior.27,29,59,60 hkl-dependent stresses deduced from lat-
tice strains have already been documented and modeled for
fcc metals and ionic solids with the NaCl structure using
EPSC simulations.26,32,33 In those simulations, certain hkl re-
flections show a behavior close to that of a pure elastic de-
formation, while others do not, displaying either larger or
smaller effective stresses.

The EPSC model we use here31 represents the aggregate
by a discrete number of orientations with associated volume
fractions. The latter are chosen such as to reproduce the ini-
tial texture of the aggregate. EPSC treats each grain as an
ellipsoidal elastoplastic inclusion embedded within a homo-
geneous elastoplastic effective medium with anisotropic
properties characteristic of the textured aggregate. The exter-
nal boundary conditions �stress and strain� are fulfilled on
average by the elastic and plastic deformations at the grain
level. The self-consistent approach explicitly captures the
fact that soft-oriented grains tend to yield at lower stresses
and transfer load to plastically hard-oriented grains, which
remain elastic up to rather large stress.

The model uses known values of single-crystal elastic
moduli. The parameters associated with each plastic defor-
mation mode are the critical resolved shear stresses �CRSS�,
given by a hardening evolution law. The simulated internal
strains are compared to experimental data by identifying the
grain orientations which, in the model aggregate, contribute
to the experimental signal associated with each diffracting
vector.

An EPSC simulation is based on applying stress or strain
increments to the aggregate, depending on the boundary con-
ditions, until the final deformation or stress state is achieved.
At each step, stress and strain in each grain are incremented
accordingly, as follows from its interaction with the effective
medium representing the aggregate. The response of medium
and grain is assumed to be described by a linear relation
between stress and total strain increments,

��c = Lc:��c,total, �9�

��̄ = L̄:��̄total, �10�

��total = ��elastic + ��plastic. �11�

Here L̄ is the elastoplastic stiffness of the aggregate and Lc

=Cc : �I−	sm
s � fs� is the elastoplastic stiffness of the crystal.

Cc is the single-crystal elastic tensor, and the sum is taken
over the active slip systems s in the grain. ms is the Schmid
tensor which resolves the shear component of the stress or
strain along a slip system and fs is a tensor which relates
stress and strain rates.61,62 As more systems become plasti-
cally active, the moduli LC become more compliant. The
stress equilibrium condition is solved for each grain assum-
ing an ellipsoidal grain shape and using the Eshelby inclu-
sion formalism. This procedure provides for a stress and
strain increment in each grain. The macroscopic elastoplastic

stiffness L̄ is derived iteratively by enforcing the condition
that the polycrystal response has to be given by the weighted
average of the individual grains responses and has to be con-
sistent with the boundary conditions.31 The main advantage
of the EPSC model is that it allows for grains to deform
more or less than the average, depending on their degree of
hardening, their orientation, and their relative directional
stiffness with respect to the medium.

2. Parameters and output of EPSC models

In our modeling of DAC RDX data, we assume that the
sample was submitted to an axial compression along ZS in
KS. In all simulations, we assume that the sample consists of
1000 randomly oriented spherical grains, with single-crystal
elastic moduli and their pressure dependence taken from IXS
measurements19 �Table I�. The polycrystalline sample is
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compressed in 3000 strain steps to a final state of strain de-
fined by

�x
0−KS = − 0.01

�y
0−KS = − 0.01 �12�

�z
0−KS = − 0.17,

where strains are expressed in KS relative to dimensions un-
der ambient pressure. The deformation geometry was derived
from x-ray radiographs of the sample taken during the DAC
experiments63 which indicate that our sample was submitted
to very little radial deformation. The final value of the axial
component �z

0−KS was chosen to match the simulated and ex-
perimental pressures at the end of the compression.

The model uses combinations of seven deformation
mechanisms typically found in hexagonal metals: slip of
1
3 �112̄0�, or �a� dislocations, on basal �0001�, prismatic


101̄0�, and pyramidal 
101̄1� planes; slip of 1
3 �112̄3�, or

�c+a� dislocations, on pyramidal 
101̄1� or 
112̄2� planes;

tensile twinning on 
101̄2� planes; and, finally, compressive

twinning on 
112̄2� planes �Table II�. For each slip and twin
mode we describe the hardening of CRSS by means of an
empirical Voce hardening rule

� = �0 + ��1 + �1	��1 − exp
−
�0	

�1
�� , �13�

where � is the instantaneous CRSS of the mechanism, �0 and
�0+�1 are the initial and final back-extrapolated CRSS, re-
spectively, �0 and �1 are the initial and asymptotic hardening
rates, and 	 is the accumulated plastic shear strain in the

grain. Strain levels presented here are relatively low, so we
reduced the number of adjustable parameters by assuming
that �1=0. In this case, the hardening law becomes linear
according to

� = �0 + �1	 , �14�

and only two adjustable parameters remain.
Output of the simulation includes the relative activity of

the various deformation mechanisms, the average stress in
the polycrystal, stress and strain within each grain of the
sample, and predicted lattice strains. The simulated elastic
lattice strains were compared to experimental data by iden-
tifying the model grains whose crystallographic planes are
oriented such as to contribute to the experimental signal. The
lattice strain �peak shift� is calculated as a weighted average
over all grains that contribute to the peak. Specifically, we

considered 101̄0, 0002, 101̄1, 101̄2, 112̄0, and 101̄3 diffrac-
tion lines at �=0, 15°, 30°, 45°, 60°, 75°, and 90°. The
region of orientation space which contributes to the signal
was assumed to be within an interval of �7.5° with respect
to the diffraction vector.

3. Representation of simulated and experimental data

It has been shown that Eq. �8� does not apply to data
collected in RDX when samples are plastically deformed.
However, previous RDX experiments4,12,15,64–67 have shown
that the measured d spacings are nearly linear when plotted
vs �1−3 cos2 �� and that the d spacings measured for �
=54.7° do correspond to those expected under the hydro-
static equivalent pressure. Therefore, experimental data were
reduced using

TABLE I. Ambient pressure and first pressure derivative of elastic moduli of hcp-Co measured using IXS
between 0 and 39 GPa �Ref. 19�. In our simulation Cij

P =Cij
0 + P · ��Cij /�P�.

C11 C33 C12 C13 C44

Cij
0 �GPa� 293 339 143 90 78

�Cij /�P 6.1 7.6 3.0 4.2 1.38

TABLE II. List of deformation mechanisms used in the simulations. �0 and �1 are parameters for the simplified Voce hardening rule Eq.
�14� and are expressed in GPa. Stars indicate deformation mechanisms that were not included in the final model.

Mechanism

Model 1 Model 2 Model 3 Model 4 Model 5

�0 �1 �0 �1 �0 �1 �0 �1 �0 �1

Basal �0001��1̄21̄0� 100 1 1 1 8 1 0.07 0.30 0.07 0.30

Prismatic 
101̄0��1̄21̄0� 100 1 8 1 1 1 0.90 1.00 0.90 1.00

Pyramidal �a� 
101̄1��1̄21̄0� 100 1 100 1 100 1 * * * *
Pyramidal �c+a� 
101̄1��112̄3� 100 1 100 1 100 1 0.70 1.50 * *
Pyramidal �c+a� second order 
112̄2��112̄3̄� * * * * * * * * * *
Tensile twin 
101̄2��101̄1� * * * * * * * * * *
Compressive twin 
21̄1̄2��21̄1̄3̄� * * * * * * * * 0.60 0.70
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�33
P−KD�hkil,�� =

dm�hkil,�� − dP�hkil�
dP�hkil�

= Q�hkil��1 − 3 cos2 �� , �15�

where dm�hkil ,�� is the measured d spacing for the hkil
diffracting line at angle �, dP�hkil� is the d spacing for the
hkil line under hydrostatic pressure P, and Q�hkil� is the
lattice strain parameter for the hkil line. dP�hkil� and Q�hkil�
were adjusted to the experimental data. dP�hkil� was then
used to estimate the average lattice parameters a and c of the
hexagonal crystal and the hydrostatic pressure P using a
known equation of state.36 Experimental data for hcp-Co lat-
tice strains vs pressure obtained using such procedure are
extracted from Ref. 22 and summarized in Fig. 2.

The EPSC model calculates the average stress in the
sample, �0−KS, from which we deduce the hydrostatic pres-
sure and differential stress

P = ��11
0−KS + �22

0−KS + �33
0−KS�/3, �16�

t = �33
0−KS − 
�11

0−KS + �22
0−KS

2
� , �17�

respectively. The EPSC model also provides absolute simu-
lated strains �33

0−KD�hkil ,�� relative to d spacings under am-
bient pressure, which were used to calculate strains induced
by the hydrostatic pressure, �P

0 , and deviatoric lattice strains
parameters Q�hkil�. The procedure consists in fitting a and b
parameters to

�33
0−KD�hkil,�� =

dm�hkil,�� − d0�hkil�
d0�hkil�

= a + b�1 – 3 cos2 �� .

�18�

Using Eqs. �5� and �15�, we get

�P
0 =

dP�hkil� − d0�hkil�
d0�hkil�

= a , �19�

Q�hkil� =
b

1 + a
. �20�

4. Pressure dependence of the elastic moduli

Since the original EPSC code did not include the effect of
pressure on elastic moduli, we modified it to calculate pres-
sure and update the corresponding elastic moduli, at each
step and in each grain. At each step i, the elastic strain in-
crement induced by the increment of stress applied to a grain
is calculated using

��kl
P−KC�i = Sklmn

P ��mn
0−KC�i − �mn

0−KC�i−1� , �21�

where the coefficients Sklmn
P are elastic compliances, function

of the hydrostatic pressure in the grain at step �i−1�, and
stress tensors are absolute, relative to the state under ambient
pressure. Lattice spacing for each grain contributing to the
diffraction peak is then updated using

d�hkil��i = d�hkil��i−1�1 + ��33
P−KD� , �22�

where ��33
P−KD is the component of the strain tensor ��kl

P−KC

perpendicular to the diffracting plane.
The average lattice strain for each reflection and orienta-

tion to be compared with experimental data is then updated
by identifying the grains contributing to the diffraction and
calculating

�0�hkil� = �d�hkil��i − d�hkil��0
d�hkil��0

� , �23�

where the average is taken over all grains contributing to the
diffraction.

III. RESULTS

In this section, we present simulations of the DAC experi-
ment done for hcp-Co using the EPSC model. In order to
study the effect of plasticity upon the lattice strain evolution,
we consider several combinations of active slip and twinning
modes, and several combinations of hardening parameters.
We will refer to each of these combinations as a crystal
model. The different sets and associated hardening param-
eters are listed in Table II. In all cases, we use the pressure
dependent elastic moduli for Co listed in Table I.

A. Pressure dependence of elastic moduli and hydrostatic
equation of state

According to the elastic theory introduced earlier, d spac-
ings measured at �=54.7° correspond to those associated
with the hydrostatic pressure P �see Eq. �15��. While the
theory used to derive this result has strong limitations, nu-
merous RDX experiments have shown that equation of states
measured at this angle tend to correspond to those measured
under hydrostatic conditions.

Figure 4 presents the pressure dependence of �P
0 = �dP

−d0� /d0 simulated with the EPSC model along with results
from RDX �Ref. 22� at �=54.7°. The figure also shows
curves calculated using the bulk modulus and pressure de-
pendence of the c /a ratio measured under hydrostatic
conditions36 as well as compression curves calculated using
the single-crystal elastic moduli and their pressure depen-
dence measured using IXS �Ref. 19� that were assumed in
the calculation.

Compression curve calculated using the single-crystal
elastic moduli and their pressure dependence measured using
IXS differ slightly from those measured under hydrostatic
conditions. RDX results almost coincide with those deduced
from the hydrostatic equation of state, while EPSC results
almost coincide with those deduced from IXS measurements.

Small differences can be seen for 101̄3 and 0002 and they
will be discussed later. It is obvious from Fig. 4 how critical
it is, in this simulation, to account for the pressure depen-
dence of the elastic constants. Otherwise, predictions tend to
grossly overestimate the lattice strains as a function of pres-
sure.
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B. Effect of individual deformation mechanisms on the
simulated lattice strains

Figure 5 presents the results of the EPSC calculations for
plasticity models 1, 2, and 3 �Table II�. For each, we show
the evolution of the polycrystal stress components �11 and
�33, hydrostatic pressure P, differential stress t, the simulated
deviatoric lattice strain parameter Q�hkil�, and the deforma-
tion mechanisms relative activity as a function of the applied
axial strain �z

0−KS.
Pressure calculated as a function of �z

0−KS is independent
of the plasticity model used. For all cases, we obtain an
evolution of pressure with �z

0−KS compatible with predictions
based on the hydrostatic equation of state of hcp-Co. At the
end of our simulated compression, the sample volume is re-
duced by 17% and pressure is 46.2 GPa. As demonstrated in
Fig. 5, all other results strongly depend on the plastic model
and they should be discussed independently.

For model 1, the strength of all deformation mechanisms
is purposely set too high for them to be activated. As a con-
sequence, the behavior of the polycrystal is fully elastic. The
differential stress and pressure in the sample increase con-
tinuously with applied strain and t reaches a value of 38.3
GPa at a pressure of 46.2 GPa. The simulated lattice strain
parameters Q also increase continuously with pressure and
are about 1 order of magnitude higher than those measured
in the experiment �Figs. 2 and 5�c��.

In model 2, basal slip is activated when the applied strain
reaches 0.0122. At this strain, pressure and differential stress
in the sample are 2.2 and 2.1 GPa, respectively. The activa-
tion of basal slip is correlated with a drop in the simulated

lattice strains for diffraction lines such as 101̄1, 101̄2, and

101̄3, corresponding to pyramidal planes, while lattice

strains for lines such as 101̄0, 112̄0, and 0002, corresponding
to basal and prismatic planes, remain largely unaffected. The
activation of basal slip also coincides with a lower rate of
increase in the differential stress. Prismatic slip is activated
when �z

0−KS reaches 0.1170, corresponding to a pressure and
differential stress of 27.6 and 11.3 GPa, respectively. The
activation of prismatic slip correlates with a second inflec-
tion in the evolution of t with strain. Activation of prismatic

slip induces a drop in the simulated lattice strain for 101̄0

and 112̄0, while strains for lines corresponding to basal
planes, such as 0002, remain largely unaffected. At the end
of the compression, differential stress reaches a value of 14.2
GPa at a pressure of 46.2 GPa.

In model 3, prismatic slip is activated when �z
0−KS reaches

0.0122. At this strain, pressure and differential stress in the
sample are 2.2 and 2.1 GPa, respectively. The activation of
prismatic slip is correlated with a drop in the simulated lat-

tice strains for diffraction lines such as 101̄0, 112̄0, while
simulated lattice strains for lines corresponding to pyramidal
and basal planes remain largely unaffected. Basal slip is ac-
tivated when �z

0−KS reaches 0.1190, corresponding to a pres-
sure and differential stress of 28.2 and 11.1 GPa, respec-
tively. The activation of basal slip is correlated with a drop in

the simulated lattice strains for the lines such as 101̄1, 101̄2,

and 101̄3, corresponding to pyramidal planes, while lattice
strains for lines corresponding to basal planes remain largely
unaffected. In all cases, activation of a plastic mode induces
a decrease in slope for t vs applied strain. At the end of the
compression, differential stress reaches a value of 13.7 GPa
at a pressure of 46.2 GPa.

We conclude from the above results that basal and pris-
matic slips split the strain evolution of the different diffrac-
tion lines, but do not reproduce the observed experimental
sequence. Also, basal activity relaxes strains in lines corre-
sponding to pyramidal planes, and prism activity in lines
corresponding to prismatic planes. In addition, although
basal and prismatic slips lower the predicted lattice strains in
comparison with the fully elastic model 1, they alone do not
provide enough relaxation resulting in simulated strains
larger than the measured ones. Since basal and prism slip do
not provide deformation along the c axis of the Co crystal,
we explore below the effect of the activation of crystallo-
graphic modes with a c-axis deformation component.

C. Optimized model

Models 4 and 5 �Table II� were found to best match the
experimental data �Figs. 1, 2, and 6�. Among the typical
deformation mechanisms found in hcp metals, four were se-
lected: basal, prismatic, and either pyramidal �c+a� slip or
compressive twinning. For both models, initial CRSS �0 and
hardening rate �1 were optimized to best match the measured
lattice strains and their evolution with pressure. Other
mechanisms, listed in Table II, were investigated but not in-
cluded in the final model. For instance, pyramidal �a� slip
lowers lattice strains parameters Q for most lines except

101̄3 and 0002 and activation of tensile twinning separates
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lattice strain parameters Q from 101̄0 and 112̄0; those effects
cannot be reconciled with the measured data.

In both optimized models, the strength of basal slip

mostly controls lattice strains simulated for 101̄1, 101̄2, and

101̄3, while that of prismatic slip mostly influences 101̄0 and

112̄0 lattice strains. For model 4, 0002 lattice strains are
controlled by pyramidal �c+a� slip, while in model 5, they
are controlled by the activation of compressive twinning.

Basal slip is by far the easiest slip system with an initial
CRSS of 0.07 GPa and a hardening coefficient of 0.3 GPa. In
both models, the relative strength of prismatic slip and com-
pressive twinning �model 5� or pyramidal slip �model 4�
were adjusted to start prismatic slip last and eventually take
over the deformation �Fig. 6�. This was important to properly
reproduce the measured 0002 lattice strains which are on the

same order of magnitude that those of 101̄0 and 112̄0 early
in the compression and saturate later on.

In model 4, basal slip is activated at P=0.2 GPa, with t
=0.2 GPa. Pyramidal slip is activated when the pressure and
differential stress are 2.3 and 1.0 GPa, respectively. Finally,
prismatic slip is activated when P=4.3 GPa and t
=1.3 GPa. At the end of the compression, the differential
stress reaches 2.0 GPa at a pressure of 46.2 GPa.

In model 5, basal slip is activated at P=0.2 GPa, with t
=0.2 GPa. Compressive twinning is activated when the

pressure and differential stress are 1.7 and 0.8 GPa, respec-
tively. Finally, prismatic slip is activated when P=2.8 GPa
and t=1.0 GPa. At the end of the compression, the differen-
tial stress reaches 1.8 GPa at a pressure of 46.2 GPa.

D. Plasticity and texture evolution

Slip and twinning induce grain reorientation and, as a
consequence, texture evolution. In our experiments we start
from a random aggregate of Co crystals and finish with a
textured aggregate, where the c axis shows a tendency to
align with the compression direction. This confirms that plas-
tic deformation takes place during the DAC test. What re-
mains to be tested is whether the experimental texture is
consistent with compressive twinning or �c+a� slip activity,
as models 4 and 5 predict, respectively.

The EPSC code that we use here does not account for
grain reorientation associated with plastic deformation and
cannot be used to simulate texture evolution. Similarly to our
EPSC model, the viscoplastic self-consistent �VPSC� code68

treats each grain as a viscoplastic inclusion in a homoge-
neous matrix that has the average properties of the polycrys-
tal and can be used for texture simulations. Starting with an
initial distribution of crystallite orientations and assuming
deformation by slip and twinning, we can simulate a defor-
mation path by enforcing incremental deformation steps. As
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deformation proceeds, crystals deform and rotate to generate
preferred orientation. In VPSC calculations, the elastic re-
sponse of the polycrystal is neglected, but grain rotations are
properly accounted for, and this code has been used multiple
times to model and understand textures obtained in DAC
RDX experiments.55

A limitation of VPSC in connection with this work is that
VPSC is based on an incompressible constitutive law, and
calculations should be run at constant volume, that is with
��x+�y +�z�=0. According to the equation of state, volumet-
ric strain imposed by compressing polycrystalline cobalt to a
pressure of 46 GPa is 17%, corresponding to axial strains of
5.7%. In the actual sample, 5.7% of the applied axial strain
�z

0−KS is accommodated elastically and the remaining 11.3%
plastically, increasing stress in the radial directions �x and
�y. We ran the VPSC calculations with strains corresponding
to the actual plastic deformation applied to the DAC sample,
which is to a maximum axial strain of 10% while preserving
�x+�y =−�z.

We used the parameters of models 4 and 5 in Table II to
model the development of texture in polycrystalline cobalt
deformed in the DAC. Simulations were performed in 200
steps, starting with a randomly oriented sample of 1000
grains assuming an effective interaction between grains. A
viscoplastic linear hardening Voce law was used. Activity of
slip systems in all 1000 grains is evaluated in each of the
steps and orientations are updated accordingly. From the ori-
entation distribution of 1000 grains, inverse pole figures
were calculated to illustrate crystal orientation patterns. All
texture processing has been performed with the software
Beartex.53

In both cases, we obtain a well defined texture with a
maximum located near 0001, that is, with the basal planes

perpendicular to the compression direction �Figs. 3�c� and
3�d��. After 10% strain, the inverse pole figures of the com-
pression direction have a maximum of 2.20 and 2.22 mul-
tiples of a random distributions �m.r.d.� for VPSC calcula-
tions using models 4 and 5, respectively. Differences can be
seen in the exact location of the maximum. In the experimen-
tal data, the texture component is evenly spread at about 15°
of the c direction. Simulations using model 4 give a maxi-
mum at about 15° of the c direction and centered around

�101̄l� planes. For model 5, this maximum is located at about

15° of the c direction and centered around �112̄l� planes.
It should be noted that the 15° shift of the c direction in

the inverse pole figure cannot be attributed to experimental
errors and is clearly visible in the measured variations in
diffraction intensities with orientation �e.g., Fig. 3 in Ref.
22�. It is also well reproduced by VPSC calculations. It
should also be noted that textures measured in hcp-Fe do not
always show a full alignment of the c axes with the compres-
sion direction69,70 and that a shift of the maximum from the c
direction has been observed in hcp-Fe.70

The conclusion of this calculation is that, although the
VPSC predicted textures were obtained by enforcing only
the plastic component of strain, they show that both pyrami-
dal �c+a� slip and compressive twinning activity are consis-
tent with the texture measured experimentally in the DAC
for Co.

IV. DISCUSSION

A. Validity of lattice strain parameters Q

In Sec. II C 3 we assumed that the experimental data
could be adjusted to Eq. �15�. This implies that the d spac-
ings measured at �=54.7°, dP�hkil�, correspond to those as-
sociated with the hydrostatic pressure, and that the effect of
differential stress can be summarized in the form of one
unique lattice strain parameter Q.

Experimental data indicate that equation of states mea-
sured on stressed samples at �=54.7° do agree with those
measured under quasihydrostatic conditions. Results of
EPSC calculations support this observation as the hydrostatic
strains adjusted to Eq. �15� do not depend significantly on the
combination of activated plastic deformation mechanisms. In
our models, small deviations can be observed between the
calculated hydrostatic strains and those expected from the

single-crystal elastic moduli, e.g., 0002 and 101̄3 in Fig. 4,
but those are significantly lower than typical errors due to
differential stress. Therefore, our model supports the idea
that equation of states measurements at �=54.7° on stressed
samples are a valid alternative if no better solution for reduc-
ing the deviatoric stress can be found.

The assumption that the measured d spacings vary lin-
early with �1−3 cos2 �� and can be summarized with a
single parameter Q is more questionable. In the case of Co, d

spacings measured for 112̄0 do not follow this relation. The
use of the lattice strain parameters Q is useful to compare
experimental data and output of EPSC models. However, the
model predictions should be compared against actual mea-
sured d spacings, as shown in Fig. 1. In this figure we dem-
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onstrate that both models 4 and 5 can correctly reproduce the
essentially nonlinear experimental curves.

In the experimental data, we observe a split of lattice
strains measured for 0002 and 0004 above 25 GPa �Fig. 2�.
This cannot be accounted for using the model presented here
as strains calculated to 0002 will be equal to those calculated
for 0004. This observation will have to be confirmed and
modeled in further studies.

B. Average pressure and stress in the polycrystalline sample

It is interesting to note that the evolution of pressure with
applied strain does not depend on the proposed plastic model
�e.g., Fig. 5�. Plastic deformation occurs at constant volume
and is independent of pressure. As a consequence, it has no
influence on the relation between the applied axial strain and
the average pressure within the sample.

Axial stresses, on the other hand, show a very different
behavior. At the highest compression, pure elastic compres-
sion results in an axial stress �33=71.6 GPa and radial stress
�11=�22=33.3 GPa �Fig. 5�a��. For optimized plastic mod-
els 4 and 5, we find �33=47.5�1� GPa and �11=�22
=45.5�1� GPa.

Plastic deformation results in a redistribution of stress in
the polycrystalline sample. Grains that deform plastically
change the stress balance of the polycrystal, decreasing the
average stress supported by the polycrystal in the axial di-
rection while increasing the stress supported in the radial
direction.

The evolution of differential stress with pressure is very
similar for both optimized models �Fig. 6�. In both cases, we
find a fast increase in differential stress to 1.3 GPa at a pres-
sure of 5 GPa. At 42.6 GPa, differential stress for models 4
and 5 are 2.0 and 1.8 GPa, respectively. The value of 1.3
GPa corresponds to stresses where all important deformation
mechanisms are activated and could be qualified as yield
strength for the present sample. Increase in differential stress
between 1.3 and 1.9 GPa at higher pressures is related to a
pressure-induced increase in elastic constants as well as
strain hardening in the sample.

C. Strength and deformation mechanisms activities

Both optimized models 4 and 5 predict a very low
strength and high activity of basal slip for hcp-Co, in line
with observations under ambient pressure.40,42 This is re-
quired to reproduce the observed relatively low lattice strains

for pyramidal diffraction lines such as 101̄1, 101̄2, or 101̄3.
Lattice strains for those planes are extremely sensitive the
values of the parameters �0 and �1 of the Voce hardening
rule.

We also predict a relatively low strength and high activity
for prismatic slip. This is required to match the observed

lattice strains for 101̄0 and 112̄0. Prismatic slip is commonly
observed in metals with the hcp structure and has been re-
ported in Co.44 The lattice strains above are extremely sen-
sitive to �0 and �1 for prismatic slip.

Models 4 and 5 differ in the activation of pyramidal �c
+a� slip or compressive twinning, respectively. Compressive

twinning has been reported in cobalt in the literature,40,43

whereas observations of pyramidal �c+a� slip are scarce. Ex-
perimentally measured textures show a maximum evenly
spread at about 15° of the c direction. VPSC simulations
using model 4 show a maximum at about 15° of the c direc-

tion and centered around �101̄l� planes. For model 5, this
maximum is located at about 15° of the c direction and cen-

tered around �112̄l� planes. This suggests that a full model
accounting for the plastic deformation of hcp-Co should
probably include a combination of both pyramidal �c+a� and
compressive twinning. In the future, we expect to be able to
resolve this issue by repeating our simulations using an im-
proved version of EPSC with slip and twin reorientation.

In both optimized simulations, activation of pyramidal
�c+a� slip or compressive twinning controls lattice strains
for the 0002 diffraction line. Voce law parameters were op-
timized to force activation of either �c+a� slip or compres-
sive twinning before activation of prismatic slip. Large hard-
ening coefficients were necessary for both mechanisms to
ensure a later activation of prismatic slip. In all cases, acti-
vation of prismatic slip prior to pyramidal �c+a� slip or com-
pressive twinning resulted in models that do not fit the ex-
perimental data.

Figure 7 presents the absolute CRSS of each active defor-
mation parameter as a function of accumulated plastic shear
strain in the grain 	 for models 4 and 5 in Table II. For basal
slip, 	 can reach values as high as 4 in some grains at the end
of the simulation. For other deformations modes, final values
of 	 range between 0.8 and 2, depending on grains and de-
formation mechanisms. The hardening law we used does not
account for an effect of pressure on the CRSS and all experi-
mental data could be fit using the simple, linear, strain de-
pendent hardening law shown in Fig. 7. More experiments,
where plastic deformation of the sample starts later in the
compression rather than ambient pressure, will be required to
quantify an effect of pressure on plasticity, but we could not
extract such information from the present data.

D. Stress heterogeneities within the polycrystal

Figure 6 presents the evolution of the average differential
stress as a function of pressure for models 4 and 5 while Fig.
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8 shows histograms of the distribution of pressure, differen-
tial stress t=�33− ��11+�22�, and lateral stress ��22−�11�
among grains in the sample at the end of compression for
both models. Pressure is very uniform and only varies by
0.05 GPa from grain to grain, which is on the order of mag-
nitude of numerical errors in the calculation. Distributions of
differential and lateral stress, however, are not uniform and
model dependent.

Lateral stresses show a distribution centered around 0
GPa, as expected. For both models, minimum and maximum
lateral stresses among grains are of the same order of mag-
nitude than the average differential stress in the sample.

For both models, differential stress among grains shows a
bimodal distribution whose mean corresponds to the average
differential stress in the polycrystalline sample. Differences
between the minimum and maximum stress among grains is
lower than the average differential stress but well over 1
GPa. Two grain families can be identified: grains in soft ori-
entations that were submitted to large plastic deformation
and show a relatively low differential stress, and grains in
hard orientations that were submitted to less plastic deforma-
tion and show a relatively high differential stress.

The relevant conclusion of the stress distribution analysis
is that plasticity leads to a significant spread of stress among
grains. This explains why models based on assuming uni-
form states in the aggregate14 yield inconsistent stresses and
elastic constants for materials deforming plastically.21,22,32,33

Figure 8 demonstrates that, as slip or twinning is activated
inside a grain, deviatoric stresses are relaxed within the
grain, and the state of stress among grains in the aggregate

becomes very heterogeneous. This cannot be accounted for
with theories relying solely on continuum mechanisms and
numerical models such as those presented here should be
applied.

E. Limitations of the model

As demonstrated in this paper, EPSC models are very
successful for understanding and modeling internal stress
and strain in plastically deforming polycrystals. The current
approach, however, has limitations. They can be separated in
two categories: limitations of the self-consistent approach,
and limitations of the actual code we used.

The self-consistent model treats each grain as an ellipsoi-
dal elastoplastic inclusion embedded within a homogeneous
elastoplastic effective medium. As such, local interactions
from grain to grain and heterogeneities within the grains
themselves are not accounted for. Three-dimensional �3D�
full-field polycrystalline models can predict local-field
variations.71–73 These calculations show important heteroge-
neities within grains and a strong localization of stress and
strain near the grain boundaries. However, the precision of
those models comes with large computational cost and com-
plexity, and they cannot be systematically applied for inter-
preting experimental results. Mean-field approaches such as
EPSC models are very successful and currently remain most
convenient to explore and understand experimental results.73

The EPSC code we used did not account for grain reori-
entation associated with slip and twinning deformation.
While we do not expect that texture evolution will change
the qualitative conclusions of this paper concerning the type
and role of deformation mechanisms, we do expect that it
will influence CRSS and hardening parameters. In the cur-
rent version of the model, grains that have an orientation
favorable for the activation of a deformation mechanism will
be activated at each step. In reality, those grains should rotate
and finally reach orientations less favorable for the deforma-
tion mechanism. As such, we expect the hardening param-
eters reported in Table II to be slightly overestimated.

V. CONCLUSIONS

A modification of the EPSC model of Turner and Tomé31

was used to successfully model x-ray diffractions measure-
ments performed on hcp-Co samples plastically deformed
under high pressure. Important information provided by the
model includes: actual values of differential stress in the
polycrystal, stress distribution among grains in the sample,
as well as identification, relative activity, and strength of the
active deformation mechanisms.

The model confirms that the effect of differential stress
and plastic deformation on measured d spacings is often
minimal at �=54.7°. Therefore, measurements of d spacings
at this angle can be used to estimate hydrostatic equation of
states if no better solution is available. This is particularly
applicable to measurements above 100 GPa for which no
hydrostatic pressure transmitting medium is available.

We find that the plastic behavior of hcp-Co plastically
deformed under high pressure is controlled by basal and pris-
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FIG. 8. Histograms of the distribution of pressure, differential
stress, and lateral stress among grains in the sample at P
=46.2 GPa for EPSC calculations using models 4 ��a�,�b�,�c�� and 5
��d�,�e�,�f�� in Table II.

MODELING ANALYSIS OF THE INFLUENCE OF… PHYSICAL REVIEW B 79, 064110 �2009�

064110-11



matic slip of �a� dislocations, and either pyramidal slip of
�c+a� dislocations or compressive twinning. Strength and
hardening coefficients for those mechanisms have been de-
termined and are listed in Table II. Basal slip is by far the
easiest and most active deformation mechanism, with an ini-
tial strength of 0.07 GPa and a linear hardening coefficient of
0.30 GPa.

For hcp-Co deformed axially in the diamond-anvil cell,
we observe a fast increase in differential stress to 1.3 GPa
between pressures of 0 and 5 GPa. The later part of the
compression shows a slower increase in differential stress
with pressure. At 42 GPa, the differential stress in hcp-Co is
1.9�0.1 GPa. The transition between the fast and slow in-
crease in differential stress in the sample is related to the
sequential activation of plastic deformation mechanisms in
the sample.

EPSC models are very powerful and overcome many
limitations of models based on continuum elasticity theory
for the interpretation of x-ray diffraction data measured on
stressed samples. They should be used for the interpretation
of all high pressure deformation experiments where x-ray
diffraction is used to probe stress within a polycrystalline
sample.
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